home *** CD-ROM | disk | FTP | other *** search
- /*
- * This code calculates the volume, mass, and inertia tensors of
- * superquadric ellipsoids and toroids. The code includes methods
- * to numerically compute gamma functions and beta functions
- */
-
- #include <stdio.h>
- #include <math.h>
-
- /*
- * The following function, abgam() is based on a continued fraction numerical
- * method found in Abremowitz and Stegun, Handbook of Mathematical Functions
- *
- */
- double abgam (x)
- double x;
- {
- double gam[10],
- temp;
-
- gam[0] = 1./ 12.;
- gam[1] = 1./ 30.;
- gam[2] = 53./ 210.;
- gam[3] = 195./ 371.;
- gam[4] = 22999./ 22737.;
- gam[5] = 29944523./ 19733142.;
- gam[6] = 109535241009./ 48264275462.;
- temp = 0.5*log (2*M_PI) - x + (x - 0.5)*log (x)
- + gam[0]/(x + gam[1]/(x + gam[2]/(x + gam[3]/(x + gam[4] /
- (x + gam[5]/(x + gam[6]/x))))));
-
- return temp;
- }
-
-
-
- /*
- * A method to compute the gamma() function.
- *
- */
- double gamma (x)
- double x;
- {
- double result,
- abgam ();
- result = exp (abgam (x + 5))/(x*(x + 1)*(x + 2)*(x + 3)*(x + 4));
- return result;
- }
-
- /*
- * A method to compute the beta() function.
- */
- double beta (m, n)
- double m,
- n;
- {
- double gamma ();
- return (gamma (m)*gamma (n)/gamma (m + n));
- }
-
-
- /*
- * A method to compute the volume of a superquadric ellipsoid
- * with axis lengths a1, a2, a3, north-south exponent n
- * and east-west exponent e
- */
- double sqellipvol (a1, a2, a3, n, e)
- double a1, /* x radius */
- a2, /* y radius */
- a3, /* z radius */
- n, /* north-south param */
- e; /* east-west param */
- {
- double beta ();
- return ((2./ 3.)*a1*a2*a3*e*n*beta (e/2., e/2.)*beta (n, n/2.));
- }
-
-
- /*
- * A method to compute the volume of a superquadric toroid
- * with axis lengths a1, a2, a3, north-south exponent n
- * east-west exponent e, and hole parameter alpha
- */
- double sqtoroidvol (a1, a2, a3, n, e, alpha)
- double a1, /* x radius */
- a2, /* y radius */
- a3, /* z radius */
- n, /* north-south param */
- e, /* east-west param */
- alpha; /* torus hole-size parameter */
- {
- return (2.*a1*a2*a3*alpha*e*n*beta (e/2., e/2.)*beta (n/2., n/2.));
-
- }
-
-
-
- /*
- * A procedure to print the inertia tensor of a canonical superquadric
- * ellipsoid in its body coordinate system.
- */
- void sq_ellipsoid_tensor (a1, a2, a3, e, n)
- double a1,
- a2,
- a3,
- e,
- n;
- {
- double iellip[3][3],
- i1E,
- i2E,
- i3E;
- i1E = (2./ 5.)* a1*a1*a1*a2*a3*e*n*beta(3.* e/2., e/2.)*beta(2.* n, n/2.);
- i2E = (2./ 5.)* a1*a2*a2*a2*a3*e*n*beta(e/2., 3.* e/2.)*beta(2.* n, n/2.);
- i3E = (2./ 5.)* a1*a2*a3*a3*a3*e*n*beta(e/2., e/2.)*beta(n, 3.* n/2.);
-
- iellip[0][0] = 0;
- iellip[1][0] = 0;
- iellip[2][0] = 0;
- iellip[0][1] = 0;
- iellip[1][1] = 0;
- iellip[2][1] = 0;
- iellip[0][2] = 0;
- iellip[1][2] = 0;
- iellip[2][2] = 0;
-
- iellip[0][0] = i2E + i3E;
- iellip[1][1] = i1E + i3E;
- iellip[2][2] = i1E + i2E;
-
- printf ("ellipsoid inertia tensor in body coordinates\n");
-
- printf (" iellip1 = %f %f %f \n", iellip[0][0], iellip[1][0], iellip[2][0]);
- printf (" iellip2 = %f %f %f \n", iellip[0][1], iellip[1][1], iellip[2][1]);
- printf (" iellip3 = %f %f %f \n", iellip[0][2], iellip[1][2], iellip[2][2]);
-
- }
-
-
- /*
- * A procedure to print the inertia tensor of a canonical superquadric
- * toroid in its body coordinate system.
- */
- void sq_toroid_tensor ( a1, a2, a3, e, n, alpha)
- double a1,
- a2,
- a3,
- e,
- n,
- alpha;
- {
- double itor[3][3],
- i1T,
- i2T,
- i3T;
- i1T = a1*a1*a1*a2*a3*alpha*e*n*beta(3*e/2,e/2)*(2*alpha*alpha*beta(n/2,n/2)+
- 3*beta(3*n/2,n/2));
- i2T = a1*a2*a2*a2*a3*alpha*e*n*beta(e/2,3*e/2)*(2*alpha*alpha*beta(n/2,n/2)+
- 3*beta(3*n/2,n/2));
- i3T = a1*a2*a3*a3*a3*alpha*e*n*beta(e/2,e/2)*beta(n/2,3*n/2);
-
- itor[0][0] = 0;
- itor[1][0] = 0;
- itor[2][0] = 0;
- itor[0][1] = 0;
- itor[1][1] = 0;
- itor[2][1] = 0;
- itor[0][2] = 0;
- itor[1][2] = 0;
- itor[2][2] = 0;
- itor[0][0] = i2T + i3T;
- itor[1][1] = i1T + i3T;
- itor[2][2] = i1T + i2T;
- printf ("toroid inertia tensor in body coordinates\n");
- printf (" itor1 = %f %f %f \n", itor[0][0], itor[1][0], itor[2][0]);
- printf (" itor2 = %f %f %f \n", itor[0][1], itor[1][1], itor[2][1]);
- printf (" itor3 = %f %f %f \n", itor[0][2], itor[1][2], itor[2][2]);
- }
-
- /*
- * A procedure to print the inertia tensor components in world coordinates,
- * given an inertia tensor in body coordinates, and the 3x3 rotation matrix
- * which rotates body vectors into world coordinates.
- */
- void iworld (Ibody, R)
- double Ibody[3][3],
- R[3][3];
- {
- double Iworld[3][3];
- Iworld[0][0] =
- (R[0][0]*Ibody[0][0]+R[0][1]*Ibody[1][0]+R[0][2]*Ibody[2][0])*R[0][0] +
- (R[0][0]*Ibody[0][1]+R[0][1]*Ibody[1][1]+R[0][2]*Ibody[2][1])*R[0][1] +
- (R[0][0]*Ibody[0][2]+R[0][1]*Ibody[1][2]+R[0][2]*Ibody[2][2])*R[0][2];
-
- Iworld[1][0] =
- (R[1][0]*Ibody[0][0]+R[1][1]*Ibody[1][0]+R[1][2]*Ibody[2][0])*R[0][0]+
- (R[1][0]*Ibody[0][1]+R[1][1]*Ibody[1][1]+R[1][2]*Ibody[2][1])*R[0][1]+
- (R[1][0]*Ibody[0][2]+R[1][1]*Ibody[1][2]+R[1][2]*Ibody[2][2])*R[0][2];
-
- Iworld[2][0] =
- (R[2][0]*Ibody[0][0]+R[2][1]*Ibody[1][0]+R[2][2]*Ibody[2][0])*R[0][0]+
- (R[2][0]*Ibody[0][1]+R[2][1]*Ibody[1][1]+R[2][2]*Ibody[2][1])*R[0][1]+
- (R[2][0]*Ibody[0][2]+R[2][1]*Ibody[1][2]+R[2][2]*Ibody[2][2])*R[0][2];
-
- Iworld[0][1] =
- (R[0][0]*Ibody[0][0]+R[0][1]*Ibody[1][0]+R[0][2]*Ibody[2][0])*R[1][0]+
- (R[0][0]*Ibody[0][1]+R[0][1]*Ibody[1][1]+R[0][2]*Ibody[2][1])*R[1][1]+
- (R[0][0]*Ibody[0][2]+R[0][1]*Ibody[1][2]+R[0][2]*Ibody[2][2])*R[1][2];
-
- Iworld[1][1] =
- (R[1][0]*Ibody[0][0]+R[1][1]*Ibody[1][0]+R[1][2]*Ibody[2][0])*R[1][0]+
- (R[1][0]*Ibody[0][1]+R[1][1]*Ibody[1][1]+R[1][2]*Ibody[2][1])*R[1][1]+
- (R[1][0]*Ibody[0][2]+R[1][1]*Ibody[1][2]+R[1][2]*Ibody[2][2])*R[1][2];
-
- Iworld[2][1] =
- (R[2][0]*Ibody[0][0]+R[2][1]*Ibody[1][0]+R[2][2]*Ibody[2][0])*R[1][0]+
- (R[2][0]*Ibody[0][1]+R[2][1]*Ibody[1][1]+R[2][2]*Ibody[2][1])*R[1][1]+
- (R[2][0]*Ibody[0][2]+R[2][1]*Ibody[1][2]+R[2][2]*Ibody[2][2])*R[1][2];
-
- Iworld[0][2] =
- (R[0][0]*Ibody[0][0]+R[0][1]*Ibody[1][0]+R[0][2]*Ibody[2][0])*R[2][0]+
- (R[0][0]*Ibody[0][1]+R[0][1]*Ibody[1][1]+R[0][2]*Ibody[2][1])*R[2][1]+
- (R[0][0]*Ibody[0][2]+R[0][1]*Ibody[1][2]+R[0][2]*Ibody[2][2])*R[2][2];
-
- Iworld[1][2] =
- (R[1][0]*Ibody[0][0]+R[1][1]*Ibody[1][0]+R[1][2]*Ibody[2][0])*R[2][0]+
- (R[1][0]*Ibody[0][1]+R[1][1]*Ibody[1][1]+R[1][2]*Ibody[2][1])*R[2][1]+
- (R[1][0]*Ibody[0][2]+R[1][1]*Ibody[1][2]+R[1][2]*Ibody[2][2])*R[2][2];
-
- Iworld[2][2] =
- (R[2][0]*Ibody[0][0]+R[2][1]*Ibody[1][0]+R[2][2]*Ibody[2][0])*R[2][0]+
- (R[2][0]*Ibody[0][1]+R[2][1]*Ibody[1][1]+R[2][2]*Ibody[2][1])*R[2][1]+
- (R[2][0]*Ibody[0][2]+R[2][1]*Ibody[1][2]+R[2][2]*Ibody[2][2])*R[2][2];
-
- printf ("toroid inertia tensor in body coordinates\n");
- printf (" Iworld1 = %f %f %f \n", Iworld[0][0], Iworld[1][0], Iworld[2][0]);
- printf (" Iworld2 = %f %f %f \n", Iworld[0][1], Iworld[1][1], Iworld[2][1]);
- printf (" Iworld3 = %f %f %f \n", Iworld[0][2], Iworld[1][2], Iworld[2][2]);
- }
-
- /*
- * sgn(x) returns -1.0 or 1.0 for speed.
- * sgn(x) can return 0.0 on zero if you wish, depending on
- * your convention
- */
- double sgn(x)
- double x;
- {
- if (x <= 0.0) return (-1.0);
- else return(1.0);
- }
-
-
- /*
- * computes position on the surface of a superquadric ellipsoid
- * v goes from -Pi/2 to Pi/2; u goes from -Pi to Pi.
- *
- */
- void sqellipsoidposn(a1,a2,a3,n,e,alpha,u,v)
- double a1,a2,a3,n,e,alpha,u,v;
- {
- double cu, su, cv, sv, x,y,z;
- cu = cos(u);
- su = sin(u);
- cv = cos(v);
- sv = cos(v);
-
- x = a1*(alpha + pow(cv,n))*pow(cu,e)*sgn(cu)*sgn(cv);
- y = a2*(alpha + pow(cv,n))*pow(su,e)*sgn(su)*sgn(cv);
- z = a3*pow(sv,n)*sgn(sv);
- }
-
-
- /*
- * computes position on the surface of a superquadric toroid
- * u and v go from -Pi to Pi
- */
-
- void sqtoroidposn(a1,a2,a3,n,e,u,v)
- double a1,a2,a3,n,e,u,v;
- {
- double cu, su, cv, sv, x,y,z;
- cu = cos(u);
- su = sin(u);
- cv = cos(v);
- sv = cos(v);
-
- x = a1*pow(cv,n)*pow(cu,e)*sgn(cu)*sgn(cv);
- y = a2*pow(cv,n)*pow(su,e)*sgn(su)*sgn(cv);
- z = a3*pow(sv,n)*sgn(sv);
-
- }
-
- /*
- * A procedure to test some of the above code
- *
- */
- main () {
- printf (" gamma(1)= 1.0 = %12.10lf\n", gamma (1.0));
- printf (" gamma(1/2)^2= Pi =%12.10lf\n", gamma (0.5)*gamma (0.5));
- printf (" gamma(2)= 1.0 = %12.10lf\n", gamma (2.0));
- printf (" gamma(3)= 2.0 = %12.10lf\n", gamma (3.0));
- printf (" gamma(4)= 6.0 = %12.10lf\n", gamma (4.0));
- printf("\n");
- printf ("beta(1,1)= 1.0 = %12.10lf\n", beta (1.0, 1.0));
- printf ("beta(1,1/2)= 2.0 = %12.10lf\n", beta (1.0, 0.5));
- printf ("beta(1/2,1/2)= Pi = %12.10lf\n", beta (0.5, 0.5));
- printf("\n");
- printf ("sq ellipsoid volume/pi= 4/3 = %12.10lf\n",
- sqellipvol(1., 1., 1., 1., 1.)/M_PI);
- printf ("sq toroid volume/pi^2 = 2.0 = %12.10lf\n",
- sqtoroidvol (1., 1., 1., 1., 1., 1.)/M_PI/M_PI);
- printf("\n");
- sq_ellipsoid_tensor (1., 1., 1., 1., 1.);
- sq_toroid_tensor (1., 1., 1., 1., 1., 1.);
- }
-
-